PQ - Sum Divisor Cordial graphs

D.Jaspin Jeba ${ }^{1,{ }^{\text {, }}}$, G.Sudhana ${ }^{\mathbf{2}}$
${ }^{1}$ Research Scholar, Reg.No.20123112092023, ${ }^{2}$ Assistant Professor
1,2 Department of Mathematics, Nesamony Memorial Christian College, Marthandam. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627 012, India.

Abstract

: Graph labeling is an assignment of integers to the vertices or edges or both depending on certain conditions. A graph G with p vertices and q edges is said to admit PQ-sum divisor cordial labeling if the labeling h from $V(G)$ to $\{1,2, \ldots, p\}$ induces a mapping $h^{*}: E(G) \rightarrow\{0,1\}$ as $h^{*}(x y)=\left\{\begin{array}{ll}1 & \text { if } 2 \mid\left(P_{x y}+Q_{x y}\right) \\ 0 & \text { otherwise }\end{array}\right.$ with the condition that $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$,

 where $e_{h^{*}}(k)$ is the number of edges labeled with k . A graph which admits a PQ- sum divisor cordial labeling is called a PQ- sum divisor cordial graph. In this paper, we prove that the path P_{n}, cycle C_{n}, star graph $K_{1, n}$, bistar graph $B_{m, n}$, the subdivision graph of the star and bistar graphs $S\left(K_{1, n}\right)$ and $S\left(B_{m, n}\right)$, the splitting graph of the star graph $S^{\prime}\left(K_{1, n}\right)$, the fan graph $F_{1, n}$, the vertex switching of the path and the cycle, the graphs $P_{n}{ }^{2}$ and $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ are PQ- sum divisor cordial graphs.Keywords: labeling, cordial labeling, sum divisor cordial labeling.

1. INTRODUCTION

Labeling of a graph is an immense and vast area of research in the field of graph theory. If the vertices or edges or both of a graph are assigned values subject to certain conditions, then it is known as graph labeling. Cahit proposed the notion of cordial labeling in 1987 as a weaker version of graceful and harmonious labeling [1]. Let f be a function from the vertex set of G to $\{0,1\}$ and for each edge $x y$ assign the label $|f(x)-f(y)|$. The function f is called a cordial labeling of G if the number of vertices labeled with 0 and the number of vertices labeled with 1 differ at most by 1 and number of edges labeled with 0 and the number of edges labeled with 1 differ at most by 1. The notion of sum divisor cordial labeling was introduced by A. Lourdusamy and F. Patrick[4]. Let f be a bijection from the vertex set of G to $\{1,2, \ldots,|V(G)|\}$ and for each edge xy assign the
label 1 if 2 divides $f(x)+f(y)$ and the label 0 otherwise. The function f is called a sum divisor cordial labeling of G if the number of edges labeled with 0 and the number of edges labeled with 1 differ at most by 1 . Motivated by this we introduced PQ- sum divisor cordial labeling of graphs. In this section we provide a summary of definitions and notations required for our investigation.

Definition 1.1. The subdivision graph $S(G)$ is obtained from a graph G by subdividing each edge of G with a vertex.

Definition 1.2. For a graph G the splitting graph $S^{\prime}(G)$ is obtained by adding a new vertex x^{\prime} corresponding to every vertex x of G such that $N(x)=N\left(x^{\prime}\right)$, where $N(x)$ is the set of all vertices adjacent to x in G .

Definition 1.3.The corona product $G_{1} \odot G_{2}$ of two graphs $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ is defined as the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 1.4. The fan graph $F_{m, n}$ is defined as the join $\overline{K_{m}}+P_{n}$, where $\overline{K_{m}}$ is the trivial graph on m vertices and P_{n} is the path graph on n vertices.

Definition 1.5. The square graph G^{2} of a graph G is obtained from G by adding new edges between every two vertices having distance two in G.

Definition 1.6. The vertex switching G_{v} of a graph G is the graph obtained by removing all the edges incident with the vertex v of G and joining the vertex v to every vertex which is not adjacent to v by an edge.

Notation 1.7. Let h be a vertex labeling and $x y \in E(G)$. We denote $P_{x y}=h(x) h(y)$ and $Q_{x y}=\left\{\begin{array}{ll}\left\lfloor\frac{h(x)}{h(y)}\right\rfloor & \text { if } h(x)>h(y) \\ \left\lfloor\frac{h(y)}{h(x)}\right\rfloor & \text { if } h(y)>h(x)\end{array}\right.$ for all $x y \in E(G)$.

Notation 1.8. Let us denote $e_{h^{*}}(k)=$ the number of edges labeled with k .
Definition 1.9. Let G be a simple graph and $h: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ be a bijection. For each edge xy assign $h^{*}(x y)=\left\{\begin{array}{ll}1 & \text { if } 2 \mid\left(P_{x y}+Q_{x y}\right) \\ 0 & \text { otherwise }\end{array}\right.$. The labeling h is called a PQ- sum divisor cordial labeling if $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. A graph which admits a PQ- sum divisor cordial labeling is called a PQ- sum divisor cordial graph.

2. MAIN RESULTS

Theorem 2.1. The path graph P_{n} is a PQ- sum divisor cordial graph.
Proof. Let G be the path graph P_{n}. Let $x_{i}(1 \leq i \leq n)$ be the vertices of G .
Define $h: V(G) \rightarrow\{1,2, \ldots, n\}$ by $h\left(x_{1}\right)=1, h\left(x_{2}\right)=2$ and
$h\left(x_{i}\right)= \begin{cases}2 i-3 & \text { if } 3 \leq i \leq\left\lceil\frac{n}{2}\right\rceil+1 \\ 2(n-i)+4 & \text { if }\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n\end{cases}$
Then the labeling h will induce the map $h^{*}: E(G) \rightarrow\{0,1\}$. Here, the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=e_{h^{*}}(1)=\frac{n-1}{2}$ if n is odd and $e_{h^{*}}(0)=\left\lceil\frac{n-1}{2}\right\rceil, e_{h^{*}}(1)=\left\lfloor\frac{n-1}{2}\right\rfloor$ if n is even. Thus $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$ and hence P_{n} is a PQ- sum divisor cordial graph.

Theorem 2.2. The complete graph K_{n} is not a PQ- sum divisor cordial graph for all n .
Proof. Let G be the complete graph K_{n}. Let $x_{i}(1 \leq i \leq n)$ be the vertices of G. Label the vertices of G in any order.

Let $\mathrm{A}=\{1,2,3,7\}$. Then we have $e_{h^{*}}(1)>\left\lceil\frac{n(n-1)}{4}\right\rceil$ for all $n \leq 17$ and $n \notin A$. Also, $e_{h^{*}}(1)<\left\lfloor\frac{n(n-1)}{4}\right\rfloor$ for all $n \geq 18$. Thus, $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right|>1$ for all $n \notin A$. Hence, K_{n} is not a PQsum divisor cordial graph for all n .

Theorem 2.3. The cycle graph C_{n} is a PQ- sum divisor cordial graph.
Proof. Let G be the cycle graph C_{n}. Let $x_{i}(1 \leq i \leq n)$ be the vertices of G. Define $h: V(G) \rightarrow\{1,2, \ldots, n\}$ as follows:
Case(i): n is odd
Label the vertex x_{1} by $1, x_{\left\lceil\frac{n}{2}\right\rceil}$ by $\mathrm{n}, x_{\left\lceil\frac{n}{2}\right]+1}$ by $\mathrm{n}-1$ and the remaining vertices by

$$
h\left(x_{i}\right)= \begin{cases}2 i-2 & \text { if } 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\ 2(n-i)+3 & \text { if }\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n\end{cases}
$$

Then the labeling h will induce the map $h^{*}: E(G) \rightarrow\{0,1\}$. Also, we get $e_{h^{*}}(1)=\left\lceil\frac{n}{2}\right\rceil$ and $e_{h^{*}}(0)=\left\lfloor\frac{n}{2}\right\rfloor$.

Case(ii): n is even
In this case, label the vertex x_{1} by $1, x_{\frac{n}{2}+1}$ by $\mathrm{n}-1, x_{\frac{n}{2}+2}$ by n and the remaining vertices
by $h\left(x_{i}\right)= \begin{cases}2 i-2 & \text { if } 2 \leq i \leq \frac{n}{2} \\ 2(n-i)+3 & \text { if } \frac{n}{2}+3 \leq i \leq n\end{cases}$
Then the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=e_{h^{*}}(1)=\frac{n}{2}$.
Thus in each case, we have $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, C_{n} is a PQ- sum divisor cordial graph.
Theorem 2.4. The graph $P_{n}{ }^{2}$ is a PQ- sum divisor cordial graph.
Proof. Let $G=P_{n}{ }^{2}$. Let $x_{i}(1 \leq i \leq n)$ be the vertices of G . Then
$E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{x_{i} x_{i+2}: 1 \leq i \leq n-2\right\}$. Define $h: V(G) \rightarrow\{1,2, \ldots, n\}$ as follows:
Case(i): n is odd
$h\left(x_{i}\right)=\left\{\begin{array}{ll}2 i-1 & \text { if } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\ 2(n-i)+2 & \text { if }\left\lceil\frac{n}{2}\right\rceil+2 \leq i \leq n\end{array}, h\left(x_{\left\lceil\frac{n}{2}\right\rceil}\right)=n-1\right.$ and $h\left(x_{\left\lceil\frac{n}{2}\right\rceil+1}\right)=n$.
Here, the labeling h will induce the map $h^{*}: E(G) \rightarrow\{0,1\}$. Also, we get
$e_{h^{*}}(1)=n-1$ and $e_{h^{*}}(0)=n-2$.
Case(ii): n is even
$h\left(x_{i}\right)= \begin{cases}2 i-1 & \text { if } 1 \leq i \leq \frac{n}{2} \\ 2(n-i)+2 & \text { if } \frac{n}{2}+1 \leq i \leq n\end{cases}$
In this case, we have $e_{h^{*}}(1)=n-1$ and $e_{h^{*}}(0)=n-2$.
Thus in each case, we have $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, $P_{n}{ }^{2}$ is a PQ- sum divisor cordial graph.
Theorem 2.5. The star graph $K_{1, n}$ is a PQ-sum divisor cordial graph.
Proof. Let G be the star graph $K_{1, n}$. Let $x, x_{i}(1 \leq i \leq n)$ be the vertices of G . Define $h: V(G) \rightarrow\{1,2, \ldots, n+1\}$ as follows:
Case(i): $n \equiv 0(\bmod 4)$

Label the vertex x by 4 and $x_{i}(1 \leq i \leq n)$ by $1,2,3,5,6, \ldots, \mathrm{n}+1$ in any order. Then the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=e_{h^{*}}(1)=\frac{n}{2}$.
Case(ii): $n \equiv 1,2,3(\bmod 4)$
Label the vertex x by 2 and $x_{i}(1 \leq i \leq n)$ by $1,3,4, \ldots, \mathrm{n}+1$ in any order. Then the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=\left\lfloor\frac{n}{2}\right\rfloor$ and $e_{h^{*}}(1)=\left\lceil\frac{n}{2}\right\rceil$.

In both cases, we have $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, $K_{1, n}$ is a PQ- sum divisor cordial graph.

Theorem 2.6. The fan graph $F_{1, n}$ is a PQ-sum divisor cordial graph.
Proof. Let G be the fan graph $F_{1, n}$. Let $x, x_{i}(1 \leq i \leq n)$ be the vertices of G . Then $E(G)=\left\{x x_{i}: 1 \leq i \leq n\right\} \bigcup\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\}$. Define $h: V(G) \rightarrow\{1,2, \ldots, n+1\}$ by $\mathrm{h}(\mathrm{x})=1$ and $\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{i}+1$. Then the labeling h will induce the map $h^{*}: E(G) \rightarrow\{0,1\}$ and we get $e_{h^{*}}(1)=n, e_{h^{*}}(0)=n-1$.

Here, $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, $F_{1, n}$ is a PQ- sum divisor cordial graph.
Theorem 2.7. The comb graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is a PQ- sum divisor cordial graph.
Proof. Let G be the comb graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$. Let $x_{i}, y_{i}(1 \leq i \leq n)$ be the vertices of G . Then $E(G)=\left\{x_{i} y_{i}: 1 \leq i \leq n\right\} \bigcup\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\}$.

Define $h: V(G) \rightarrow\{1,2, \ldots, 2 n\}$ by $\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)=2 \mathrm{i}-1$ and $\mathrm{h}\left(\mathrm{y}_{\mathrm{i}}\right)=2 \mathrm{i}$. Then the induced map $h^{*}: E(G) \rightarrow\{0,1\}$ satisfies $e_{h^{*}}(1)=n$ and $e_{h^{*}}(0)=n-1$. Here, $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$.

Hence, $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is a PQ- sum divisor cordial graph.
Theorem 2.8. The bistar graph $B_{m, n}$ is a PQ- sum divisor cordial graph.
Proof. Let G be the bistargraph $B_{m, n}$. Let $x, y, x_{i}(1 \leq i \leq m), y_{j}(1 \leq j \leq n)$ be the vertices of G . Without loss in generality we may assume that $m \geq n$. Define $h: V(G) \rightarrow\{1,2, \ldots, m+n+2\}$ as follows:
Case(i): Both m and n are odd
$h\left(x_{1}\right)=1, h\left(x_{2}\right)=3, h(x)=2, h(y)=4, h\left(x_{i}\right)=n+2+i \quad$ for $n+2 \leq i \leq m$,
$h\left(x_{i}\right)=\left\{\begin{array}{l}4\left\lceil\frac{i}{2}\right\rceil-1 \text { if } i \text { is odd } \\ 2 i \quad \text { if } i \text { is even }\end{array}\right.$ for $3 \leq i \leq n+1$ and $h\left(y_{j}\right)=\left\{\begin{array}{l}4\left\lceil\frac{j}{2}\right\rceil+1 \text { if } j \text { is odd } \\ 2 j+2 \text { if } j \text { is even }\end{array}\right.$ for $1 \leq j \leq n$

Then the labeling h will induce the map $h^{*}: E(G) \rightarrow\{0,1\}$. Also the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=\left\lceil\frac{m+n+1}{2}\right\rceil$ and $e_{h^{*}}(1)=\left\lfloor\frac{m+n+1}{2}\right\rfloor$.
Case(ii): Both m and n are even
In this case, label the vertices of G as in case(i). Then the number of edges labeled with 0 and 1 are

$$
e_{h^{*}}(0)=\left\{\begin{array}{l}
{\left[\left.\frac{m+n+1}{2} \right\rvert\, \text { if } n \equiv 2(\bmod 4)\right.} \\
\left\lfloor\frac{m+n+1}{2}\right\rfloor \text { if } n \equiv 0(\bmod 4)
\end{array}, e_{h^{*}}(1)= \begin{cases}\left\lceil\left.\frac{m+n+1}{2} \right\rvert\,\right. & \text { if } n \equiv 0(\bmod 4) \\
\left\lfloor\frac{m+n+1}{2}\right\rfloor & \text { if } n \equiv 2(\bmod 4)\end{cases}\right.
$$

Case(iii): m is odd and n is even
If $m \equiv 1(\bmod 4)$, label the vertices of G as in case(i).
If $m \equiv 3(\bmod 4)$ and $n \equiv 2(\bmod 4)$, label the vertices of G by

$$
h\left(x_{1}\right)=1, h\left(y_{1}\right)=3, h(x)=2, h(y)=4, h\left(x_{i}\right)=n+2+i \quad \text { for } n+2 \leq i \leq m
$$

$h\left(x_{i}\right)=\left\{\begin{array}{l}2 i \quad \text { if } i \text { is odd } \\ 2 i+1 \quad \text { if } i \text { is even }\end{array}\right.$ for $2 \leq i \leq n$ and $h\left(y_{j}\right)=\left\{\begin{array}{l}2 j+2 \quad \text { if } j \text { is odd } \\ 2 j+3 \text { if } j \text { is even }\end{array}\right.$ for $2 \leq j \leq n$
If $m \equiv 3(\bmod 4)$ and $n \equiv 0(\bmod 4)$, label the vertices of G by

$$
h\left(x_{1}\right)=3, h\left(y_{1}\right)=1, h(x)=2, h(y)=4, h\left(x_{i}\right)=n+2+i \text { for } n \leq i \leq m
$$

$h\left(x_{i}\right)=\left\{\begin{array}{l}2 i+2 \quad \text { if } i \text { is odd } \\ 2 i+3 \quad \text { if } i \text { is even }\end{array}\right.$ for $2 \leq i \leq n-1$ and $h\left(y_{j}\right)=\left\{\begin{array}{l}2 j \quad \text { if } j \text { is odd } \\ 2 j+1 \quad \text { if } j \text { is even }\end{array}\right.$ for $2 \leq j \leq n$
Here, we observe that $e_{h^{*}}(0)=e_{h^{*}}(1)=\frac{m+n+1}{2}$.
Case(iv): m is even and n is odd
If $[m \equiv 0(\bmod 4)$ and $n \equiv 3(\bmod 4)]$ or $[m \equiv 2(\bmod 4)$ and $n \equiv 1(\bmod 4)], \quad$ label the vertices of G as in case (i). If $[(m \equiv 0(\bmod 4)$ and $n \equiv 1(\bmod 4)]$ or $[m \equiv 2(\bmod 4)$ and $n \equiv 3(\bmod 4)$] , label the vertices of G as in the case $m \equiv 3(\bmod 4)$ and $n \equiv 2(\bmod 4)$ of case(iii).

Then the number of vertices and edges labeled with 0 and 1 are $e_{h^{*}}(0)=e_{h^{*}}(1)=\frac{m+n+1}{2}$. In each cases, $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, $B_{m, n}$ is a PQ- sum divisor cordial graph.

Theorem 2.9. The graph $S\left(K_{1, n}\right)$ is a PQ- sum divisor cordial graph.
Proof. Let G be the subdivision graph of the star graph $K_{1, n}$. Let $x, x_{i}(1 \leq i \leq n)$ be the vertices of $K_{1, n}$ and let $x_{i}{ }^{\prime}(1 \leq i \leq n)$ be the vertices which subdivides the edges $x x_{i}(1 \leq i \leq n)$. Define $h: V(G) \rightarrow\{1,2, \ldots, 2 n+1\}$ by $h(x)=1, h\left(x_{i}\right)=2 i+1$ and $h\left(x_{i}{ }^{\prime}\right)=2 i$. Then h will induce the map $h^{*}: E(G) \rightarrow\{0,1\}$ and we get $e_{h^{*}}(0)=e_{h^{*}}(1)=n$.

Here, $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, $S\left(K_{1, n}\right)$ is a PQ- sum divisor cordial graph.

Theorem 2.10. The graph $S\left(B_{m, n}\right)$ is a PQ- sum divisor cordial graph.
Proof. Let G be the subdivision graph of the bistar graph $B_{m, n}$. Let $x, y, x_{i}(1 \leq i \leq m)$ and $y_{j}(1 \leq j \leq n)$ be the vertices of $B_{m, n}$. Let z be the vertex which subdivides the edge xy and let $x_{i}{ }^{\prime}(1 \leq i \leq m), \quad y_{j}{ }^{\prime}(1 \leq j \leq n)$ be the vertices which subdivides the edges $x x_{i}(1 \leq i \leq m)$ and $y y_{j}(1 \leq j \leq n)$ respectively. Define $h: V(G) \rightarrow\{1,2, \ldots, 2(m+n)+3\}$ as follows:
Case(i): n is even
$h(x)=1, h(y)=2, h(z)=3, h\left(x_{i}\right)=2 i+3, h\left(x_{i}{ }^{\prime}\right)=2(i+1)$ for $1 \leq \mathrm{i} \leq \mathrm{m}$,
$h\left(y_{j}\right)=\left\{\begin{array}{ll}2(m+j)+2 & \text { if } j \text { is odd } \\ 2(m+j)+3 & \text { if } j \text { is even }\end{array}\right.$ and $\quad h\left(y_{j}\right)=\left\{\begin{array}{ll}2(m+j)+4 & \text { if } j \text { is odd } \\ 2(m+j)+1 & \text { if } j \text { is even }\end{array}\right.$ for $1 \leq \mathrm{j} \leq \mathrm{n}$
Case(ii): n is odd
Subcase(i): m is odd
In this case, label the vertices $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime}(1 \leq \mathrm{i} \leq \mathrm{m}-2), \mathrm{y}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}{ }^{\prime}(1 \leq \mathrm{j} \leq \mathrm{n}-2)$ as in case(i). Also label $h\left(y_{n-1}\right)=2(m+n)+3, h\left(y_{n}\right)=2(m+n+1), h\left(y_{n-1}{ }^{\prime}\right)=2(m+n)-1 \quad$ and $h\left(y_{n}{ }^{\prime}\right)=2(m+n)+1$.
Subcase(i): m is even
In this case, label the vertices $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime}(1 \leq \mathrm{i} \leq \mathrm{m}-1), \mathrm{y}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}^{\prime}(1 \leq \mathrm{j} \leq \mathrm{n}-1)$ as in case(i). Also label $h\left(y_{n}\right)=2(m+n)+3$ and $h\left(y_{n}{ }^{\prime}\right)=2(m+n+1)$.
In each case, the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=e_{h^{*}}(1)=m+n+1$.
Here, $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, $S\left(B_{m, n}\right)$ is a $P Q$ - sum divisor cordial graph.
Theorem 2.11. The graph $S^{\prime}\left(K_{1, n}\right)$ is a PQ- sum divisor cordial graph.
Proof. Let G be the splitting graph of the star graph $K_{1, n}$. Let $x, x_{i}(1 \leq i \leq n)$ be the vertices of $K_{1, n}$ and let $x^{\prime}, x_{i}{ }^{\prime}(1 \leq i \leq n)$ be the added vertices corresponding to $x, x_{i}(1 \leq i \leq n)$ to form G . Define $h: V(G) \rightarrow\{1,2, \ldots, n\}$ as follows:

Case(i): $n \equiv 0(\bmod 4)$
$h\left(x_{1}\right)=1, h\left(x_{2}\right)=3, h(x)=2, h\left(x^{\prime}\right)=4$,
$h\left(x_{i}\right)=\left\{\begin{array}{l}4\left\lceil\frac{i}{2}\right\rceil-1 \text { if } i \text { is odd } \\ 2 i \quad \text { if } i \text { is even }\end{array}\right.$ for $3 \leq i \leq n$ and $h\left(x_{i}{ }^{\prime}\right)=\left\{\begin{array}{l}4\left\lceil\frac{i}{2}\right\rceil+1 \text { if } i \text { is odd } \\ 2 i+2 \text { if is even }\end{array}\right.$ for $1 \leq i \leq n$

Here, the labeling h will induce the map $h^{*}: E(G) \rightarrow\{0,1\}$. Also the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=e_{h^{*}}(1)=\frac{3 n}{2}$.
Case(ii): $n \equiv 1,2,3(\bmod 4)$
$h\left(x_{1}\right)=1, h\left(x_{1}{ }^{\prime}\right)=3, h(x)=2, h\left(x^{\prime}\right)=4$,
$h\left(x_{i}\right)=\left\{\begin{array}{l}2 i+2 \quad \text { if } i \text { is odd } \\ 2 i+3 \quad \text { if } i \text { is even }\end{array}\right.$ for $2 \leq i \leq n$ and $h\left(x_{i}^{\prime}\right)=\left\{\begin{array}{l}2 i \quad \text { if } i \text { is odd } \\ 2 i+1 \quad \text { if } i \text { is even }\end{array}\right.$ for $1 \leq i \leq n$
Then the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=e_{h^{*}}(1)=\frac{3 n}{2}$ if $n \equiv 2(\bmod 4)$.
Also $e_{h^{*}}(0)=\left\lfloor\frac{3 n}{2}\right\rfloor$ and $e_{h^{*}}(1)=\left\lceil\frac{3 n}{2}\right\rceil$ if n is odd.
Here, $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, $S^{\prime}\left(K_{1, n}\right)$ is a PQ- sum divisor cordial graph.

Theorem 2.12. Vertex switching of a cycle C_{n} admits PQ- sum divisor cordial labeling.
Proof. Let G be the cycle graph C_{n} and let G_{x} be the graph obtained from G by switching a vertex x of G . Let $x_{i}(1 \leq i \leq n)$ be the vertices of G . Without loss in generality we may assume that $\mathrm{x}=$ v_{1}. Define $h: V\left(G_{v_{1}}\right) \rightarrow\{1,2, \ldots, n\}$ by $h\left(x_{i}\right)=i$. Then the labeling h will induce the map $h^{*}: E(G) \rightarrow\{0,1\}$. Also the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=n-2$ and $e_{h^{*}}(1)=n-3$.

Here, $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, vertex switching of a cycle C_{n} is a PQ- sum divisor cordial graph.

Theorem 2.13. Vertex switching of a path graph P_{n} admits PQ - sum divisor cordial labeling.
Proof. Let G be a path graph P_{n} and let $x_{i}(1 \leq i \leq n)$ be the vertices of G. Let $G_{x_{i}}$ be the graph obtained from G by switching a vertex x_{i} of G. Then we have $V(G)=V\left(G_{x_{i}}\right)$.

Define $h: V\left(G_{x_{i}}\right) \rightarrow\{1,2, \ldots, n\}$ by $h\left(x_{k}\right)= \begin{cases}k+1 & \text { if } k<i \\ 1 & \text { if } k=i \\ k & \text { if } k>i\end{cases}$
Then the labeling h will induce the map $h^{*}: E(G) \rightarrow\{0,1\}$. Also the number of edges labeled with 0 and 1 are $e_{h^{*}}(0)=e_{h^{*}}(1)=n-3$.

Here, $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$. Hence, vertex switching of a path P_{n} is a $P Q$ - sum divisor cordial graph.

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, Vol 23, PP.201-207, 1987.
[2] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic J.Combin., (2021), \#DS6.
[3] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, (1972).
[4] A. Lourdusamy and F. Patrick, Sum Divisor Cordial Graphs, Proyecciones Journal of Mathematics, 35(1), PP.119-136, (2016).
[5] A.Lourdusamy and F.Patrick, Sum Divisor Cordial labeling for star and ladder related graphs, Proyecciones Journal of Mathematics, 35(4), PP.437455,(2016).
[6] R. Ponraj, S. Subbulakshmi and S. Somasundaram, PD- Prime Cordial Labeling of Graphs, Journal of Algorithms and Computation, 51 issue 2, December 2019, PP. 1-7.

